Affiliation:
1. Facultad de Ingeniería, Universidad San Sebastián, Lientur 1457, Concepción 4030000, Chile
2. GET, UMR 5563, Université de Toulouse, CNRS-IRD-OMP-CNES, 31000 Toulouse, France
3. ISPA, UMR 1391 INRAE, Bordeaux Sciences Agro, 33140 Villenave-d’Ornon, France
Abstract
This study investigated the influence of long-term climatic phenomena on the hydroclimatic dynamics of the Grey River Basin in Chilean Patagonia. By analyzing hydroclimatological datasets from the last four decades (1980 to 2020), including precipitation, temperature, wind speed, potential evapotranspiration, and streamflow, we identified key trends and correlations with three large-scale climate indices: the Antarctic Oscillation (AAO), El Niño—Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). Statistical methods such as the Mann–Kendall test, Sen’s slope, PCA, and wavelet coherence were applied. The results indicate a significant upward trend in streamflow, with Sen’s slope of 0.710 m3/s/year (p-value = 0.020), particularly since 2002, while other variables showed limited or no significant trends. AAO exhibited the strongest correlations with streamflow and wind speed, while ENSO 3.4 was the most influential ENSO index, especially during the two extreme El Niño events in 1982, 1997, and 2014. PDO showed weaker relationships overall. Wavelet analysis revealed coherent periodicities at 1- and 2-year frequencies between AAO and flow (wavelet coherence = 0.44), and at 2- to 4-year intervals between ENSO and precipitation (wavelet coherence = 0.63). These findings highlight the sensitivity of the Grey River basin to climatic variability and reinforce the need for integrated water resource management in the face of ongoing climate change.