Simulation Study on Methods for Reducing Dynamic Cable Curvature in Floating Wind Power Platforms

Author:

Guo Zhitao1,Zhao Xudong2,Ma Qingfen2,Li Jingru2,Wu Zhongye2

Affiliation:

1. POWERCHINA Hainan Electric Power Engineering Co., Ltd., Haikou 570228, China

2. College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China

Abstract

As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue failure. Thus, dynamic and fatigue analyses are necessary for the design and operation of dynamic cables. In this study, a fatigue analysis of the three-core four-layer armored dynamic cable used in a semisubmersible floating wind turbine was carried out at a water depth of 25 m. The Miner linear cumulative damage method, based on material S-N curves, was used to predict fatigue life. The results indicate that, at 10 times the safety factor, the dynamic cables meet the design requirement of a 30-year service life in the studied marine environment. The maximal curvature of the dynamic cable always appears at the exit of the bend stiffener, even beyond the allowed point. Adding weights to the section where the cable exits the bend stiffener and adjusting the bend stiffener’s hanging angle can both reduce the curvature at the bend stiffener exit. The scheme of adjusting the bend stiffener’s hanging angle is preferred, for it is easier for simultaneous adjusting and inducing much smaller extra stress in the cable. As the hanging angle increases, the curvature at the bend stiffener exit decreases, while the maximal effective tension and maximal von Mises stress gradually increase. For certain operating conditions, especially with higher waves, it is better to adjust the hanging angle to avoid excessive curvature and, meanwhile, ensure the increase in the stress within a reasonable range.

Funder

POWERCHINA Hainan Electric Power Engineering Co. Ltd.

Publisher

MDPI AG

Reference28 articles.

1. Researchon development of offshore wind power;Liu;Ship Eng.,2020

2. Applicability analysis of floating wind turbine foundation in China;Zhou;Wind Energy,2020

3. New-type floatingoffshore wind power generation and its key technology research;Gao;Energy Res. Inf.,2010

4. Analysis on development prospect offloating offshore wind power in China;Liu;Sino-Glob. Energy,2020

5. Global Wind Energy Council (GWEC) (2021). Global Offshorewind Report 2021 [EB/OL], Global Wind Energy Council (GWEC).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global Responses of Exposed and Suspended Submarine Cables Due to Anchor Dragging;Journal of Marine Science and Engineering;2024-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3