Quantum-Chemical Study of the Benzene Reaction with Fluorine

Author:

Adamson Sergey O.1,Kharlampidi Daria D.23,Shtyrkova Anastasia S.2,Umanskii Stanislav Y.1,Dyakov Yuri A.14,Morozov Igor I.1,Golubkov Maxim G.1

Affiliation:

1. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia

2. Department of Biology and Chemistry, Moscow State Pedagogical University, 119435 Moscow, Russia

3. Department of Gravitation and Cosmology, RUDN University, 117198 Moscow, Russia

4. Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan

Abstract

The reaction of benzene with fluorine atoms may be of interest as a source of phenyl and ipso-fluorocyclohexadienyl radicals or as a method for fluorobenzene gas phase synthesis. The structures and electronic energies of the equilibrium configurations and transition complexes of the C6H6F system are calculated in the density functional approximation. It was found that the interaction of benzene with atomic fluorine can proceed via two channels: hydrogen abstraction with the phenyl radical formation, and hydrogen substitution with the ipso-fluorocyclohexadienyl radical as primary product. Then the dissociation of the ipso-fluorocyclohexadienyl radical leads to creation of fluorobenzene and atomic hydrogen. The initiation of this reaction requires the activation energy near 27 kcal/mol, which indicates the low probability of this process, occurring at temperatures close to the standard (298 K). The calculations of the fluorocyclohexadienyl isomers and their cations also indicate that the formation of fluorobenzene as a product of secondary reactions is unlikely. The conclusions are confirmed by experimental data.

Funder

Ministry of Science and Higher Education of the Russian Federation

Taiwan National Science and Technology Council

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reaction of Atomic Fluorine with Benzene;Russian Journal of Physical Chemistry B;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3