Abstract
This paper develops a novel hybrid feature learner and classifier for vibration-based fault detection and isolation (FDI) of industrial apartments. The trained model extracts high-level discriminative features from vibration signals and predicts equipment state. Against the limitations of traditional machine learning (ML)-based classifiers, the convolutional neural network (CNN) and deep neural network (DNN) are not only superior for real-time applications, but they also come with other benefits including ease-of-use, automated feature learning, and higher predictive accuracies. This study proposes a hybrid DNN and one-dimensional CNN diagnostics model (D-dCNN) which automatically extracts high-level discriminative features from vibration signals for FDI. Via Softmax averaging at the output layer, the model mitigates the limitations of the standalone classifiers. A diagnostic case study demonstrates the efficiency of the model with a significant accuracy of 92% (F1 score) and extensive comparative empirical validations.
Funder
Ministry of Science and ICT, South Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献