Evaluation of Integrated Concepts with CO2 for Heating, Cooling and Hot Water Production

Author:

Smitt Silje,Pardiñas Ángel,Hafner Armin

Abstract

The hotel sector is characterized by high thermal demands and a large carbon footprint, which greatly contributes to the global warming effect. Consequently, there is a need to investigate solutions that can reduce energy usage within this sector by means of environmentally friendly and sustainable technologies. Integrated CO2 heat pump systems for heating, cooling, and hot water production in hotels have demonstrated promising results. This paper theoretically compares the energy consumption, environmental impact, and cost of three different design concepts for integrated CO2 units equipped with thermal storage. The main characteristics of the evaluated designs are single-stage compression, parallel compression, and ejector-supported parallel compression. Furthermore, two separate hot water charging strategies were implemented and investigated over a large span of ambient temperatures and loads. The evaluations were carried out by considering eight different European locations, ranging from Scandinavia to the Mediterranean. The results revealed that the ejector-supported parallel compression design was superior in terms of annual COP, which was found to be in the range of 4.27 to 5.01 for the Scandinavian locations and 5.03 to 5.71 for the other European locations. When accounting for investment cost and electricity prices, the payback period at the Scandinavian locations was 6.3 to 7.7 years. Payback periods of 3 and 4.5 to 7.5 were obtained for hotels located in the temperate and Mediterranean climates, respectively. The investigation also revealed that the hot water charging strategy, rather than the specific CO2 heat pump design, is the least expensive measure to enhance performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference58 articles.

1. The Paris Agreement, 2021 United Nations Framework Convention on Climate Changehttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

2. Sector by Sector: Where Do Global Greenhouse Gas Emissions Come from?;Ritchie,2020

3. Eurostat. Final Energy Consumption by Sectorhttps://ec.europa.eu/eurostat/databrowser/view/ten00124/default/table?lang=en

4. Europe’s Buildings under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings;Economidou,2011

5. Action Plan for Energy Efficiency: Realising the Potential, Communication from the Commission, COM (2006) 545 Finalhttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0545&from=EN

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3