The Impact of Surface Drug Distribution on the Acoustic Behavior of DOX-Loaded Microbubbles

Author:

Lin Chia-Wei,Fan Ching-Hsiang,Yeh Chih-KuangORCID

Abstract

Previous studies have reported substantial improvement of microbubble (MB)-mediated drug delivery with ultrasound when drugs are loaded onto the MB shell compared with a physical mixture. However, drug loading may affect shell properties that determine the acoustic responsiveness of MBs, producing unpredictable outcomes. The aim of this study is to reveal how the surface loaded drug (doxorubicin, DOX) affects the acoustic properties of MBs. A suitable formulation of MBs for DOX loading was first identified by regulating the proportion of two lipid materials (1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-rac-glycerol sodium salt (DSPG)) with distinct electrostatic properties. We found that the DOX loading capacity of MBs was determined by the proportion of DSPG, since there was an electrostatic interaction with DOX. The DOX payload reduced the lipid fluidity of MBs, although this effect was dependent on the spatial uniformity of DOX on the MB shell surface. Loading DOX onto MBs enhanced acoustic stability 1.5-fold, decreased the resonance frequency from 12–14 MHz to 5–7 MHz, and reduced stable cavitation dose by 1.5-fold, but did not affect the stable cavitation threshold (300 kPa). Our study demonstrated that the DOX reduces lipid fluidity and decreases the elasticity of the MB shell, thereby influencing the acoustic properties of MBs.

Funder

Ministry of Science and Technology, Taiwan

National Tsing Hua University

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3