Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants

Author:

Mutreja Isha1,Lan Caixia1,Li Qishun12,Aparicio Conrado134ORCID

Affiliation:

1. MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA

2. The Affiliated Stomatological Hospital of Nanchang University, Nanchang 330000, China

3. Faculty of Odontology, UIC Barcelona−International University of Catalonia, 08198 Sant Cugat del Vallès, Spain

4. IBEC Institute for Bioengineering of Catalonia, 08170 Barcelona, Spain

Abstract

Dental implant−associated infection is a clinical challenge which poses a significant healthcare and socio−economic burden. To overcome this issue, developing antimicrobial surfaces, including antimicrobial peptide coatings, has gained great attention. Different physical and chemical routes have been used to obtain these biofunctional coatings, which in turn might have a direct influence on their bioactivity and functionality. In this study, we present a silane−based, fast, and efficient chemoselective conjugation of antimicrobial peptides (Cys−GL13K) to coat titanium implant surfaces. Comprehensive surface analysis was performed to confirm the surface functionalization of as−prepared and mechanically challenged coatings. The antibacterial potency of the evaluated surfaces was confirmed against both Streptococcus gordonii and Streptococcus mutans, the primary colonizers and pathogens of dental surfaces, as demonstrated by reduced bacteria viability. Additionally, human dental pulp stem cells demonstrated long−term viability when cultured on Cys−GL13K−grafted titanium surfaces. Cell functionality and antimicrobial capability against multi−species need to be studied further; however, our results confirmed that the proposed chemistry for chemoselective peptide anchoring is a valid alternative to traditional site−unspecific anchoring methods and offers opportunities to modify varying biomaterial surfaces to form potent bioactive coatings with multiple functionalities to prevent infection.

Funder

National Institute for Dental and Craniofacial Research

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3