Improving Drug Delivery on Candida Albicans Using Geraniol Nanoemulsion

Author:

Silva Pontes Cristiano1,Garcia de Carvalho Gabriel1ORCID,Rosa Perin Leite Andressa2ORCID,Chorilli Marlus3ORCID,Palomari Spolidorio Denise Madalena1

Affiliation:

1. Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil

2. Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara 14801-903, SP, Brazil

3. Department of Drugs and Medicines, International School of Pharmaceuticals Sciences, São Paulo State University, Araraquara 14801-903, SP, Brazil

Abstract

Geraniol (GE) is a monoterpene alcohol with excellent antifungal activity. However, its low solubility and high volatility impair its use. Nanoemulsions (NE) are excellent delivery systems for poorly soluble and volatile drugs, achieving controlled release of the active ingredient. The aim of this study was to improve the delivery of geraniol (GE) incorporated in NE against Candida albicans in order to evaluate the antibiofilm effect and cytotoxicity. Nanoemulsion containing 10% oil phase (cholesterol) (w/w), 10% surfactant (mixture of soy phosphatidylcholine and Brij 58; 1:2) (w/w), and 80% aqueous phase (phosphate buffer) (w/w) was synthesized. Incorporation of GE was carried out by sonication and the final compounds were characterized by hydrodynamic diameter, polydispersity index (PDI), and zeta potential (ZP), in addition to evaluation of physicochemical stability after 6 months and 1 year. The GE-NE effect was evaluated on Candida albicans biofilms and cytotoxic effect was evaluated on immortalized normal oral cell line NOK-Si. The diameter of GE-NE was 232.3 ± 2.7 nm and PDI 0.155 with exhibited homogeneity and stability in solution. GE-NE showed antibiofilm activity at a concentration of 75 μg/mL with reduction of >6.0 log10, and no cytotoxicity against NOK-Si cells at concentrations below 150 μg/mL was observed. GE-NE proved to be a promising candidate for prevention and treatment of fungal diseases.

Funder

Amazona Research Foundation

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3