Dual-Targeted Therapy in HER2-Overexpressing Breast Cancer with Trastuzumab and Novel Cholesterol-Based Nioplexes Silencing Mcl-1

Author:

Pengnam Supusson1ORCID,Opanasopit Praneet1ORCID,Rojanarata Theerasak1,Yingyongnarongkul Boon-ek2,Thongbamrer Chopaka2,Plianwong Samarwadee3

Affiliation:

1. Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand

2. Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

3. Pharmaceutical Innovations of Natural Products Unit (PhInNat), Burapha University, Chonburi 20131, Thailand

Abstract

The challenge in HER2-overexpressing breast cancer therapy lies in creating an effective target therapy to overcome treatment resistance. Monoclonal antibodies and target gene silencing by siRNA are two potential strategies that have been widely developed for treating HER2-positive breast cancer. The siRNA delivery system is a crucial factor that influences siRNA therapy’s success. In this study, lipid-based nanoparticles (cationic niosomes) composed of different cholesterol-based cationic lipids were formulated and characterized for delivering siRNA into HER2-overexpressing breast cancer cells. Niosomes containing a trimethylammonium headgroup showed the highest siRNA delivery efficiency with low toxicity. The myeloid cell leukemia-1 (Mcl-1) siRNA nioplex treatment significantly decreased mRNA expression and breast cancer cell growth. Dual-targeted therapy, consisting of treatment with an Mcl-1 siRNA nioplex and trastuzumab (TZ) solution, noticeably promoted cell-growth inhibition and apoptosis. The synergistic effect of dual therapy was also demonstrated by computer modeling software (CompuSyn version 1.0). These findings suggest that the developed cationic niosomes were effective nanocarriers for siRNA delivery in breast cancer cells. Furthermore, the Mcl-1 nioplex/TZ dual treatment establishes a synergistic outcome that may have the potential to treat HER2-overexpressing breast cancer.

Funder

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation

Thailand Science Research and Innovation

National Research Council of Thailand

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3