Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity

Author:

Andima Moses,Costabile Gabriella,Isert Lorenz,Ndakala Albert,Derese Solomon,Merkel Olivia

Abstract

β-Sitosterol (β-Sit) is a dietary phytosterol with demonstrated anticancer activity against a panel of cancers, but its poor solubility in water limits its bioavailability and therapeutic efficacy. In this study, poly(lactide-co-glycolic acid) (PLGA) and block copolymers of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) were used to encapsulate β-Sit into nanoparticles with the aim of enhancing its in vitro anticancer activity. β-Sitosterol-loaded PLGA and PEG-PLA nanoparticles (β-Sit-PLGA and β-Sit-PEG-PLA) were prepared by using a simple emulsion-solvent evaporation technique. The nanoparticles were characterized for size, particle size distribution, surface charge, and encapsulation efficiency. Their cellular uptake and antiproliferative activity was evaluated against MCF-7 and MDA-MB-231 human breast cancer cells using flow cytometry and MTT assays, respectively. β-Sit-PLGA and β-Sit-PEG-PLA nanoparticles were spherical in shape with average particle sizes of 215.0 ± 29.7 and 240.6 ± 23.3 nm, a zeta potential of −13.8 ± 1.61 and −23.5 ± 0.27 mV, respectively, and with narrow size distribution. The encapsulation efficiency of β-Sit was 62.89 ± 4.66 and 51.83 ± 19.72 % in PLGA and PEG-PLA nanoparticles, respectively. In vitro release in phosphate-buffered saline (PBS) and PBS/with 0.2% Tween 20 showed an initial burst release, followed by a sustained release for 408 h. β-Sit-PLGA nanoparticles were generally stable in a protein-rich medium, whereas β-Sit-PEG-PLA nanoparticles showed a tendency to aggregate. Flow cytometry analysis (FACS) indicated that β-Sit-PLGA nanoparticles were efficiently taken up by the cells in contrast to β-Sit-PEG-PLA nanoparticles. β-Sit-PLGA nanoparticles were therefore selected to evaluate antiproliferative activity. Cell viability was inhibited by up to 80% in a concentration range of 6.64–53.08 μg/mL compared to the untreated cells. Taken together, encapsulation of β-Sitosterol in PLGA nanoparticles is a promising strategy to enhance its anticancer activity against breast cancer cells.

Funder

Deutscher Akademischer Austauschdienst

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3