Post-Injury Buprenorphine Administration Is Associated with Long-Term Region-Specific Glial Alterations in Rats

Author:

Ryu Jane,Jeizan Pantea,Ahmed Saira,Ehsan Sareena,Jose JefinORCID,Regan Sean,Gorse Karen,Kelliher Corrina,Lafrenaye AudreyORCID

Abstract

Traumatic brain injury (TBI) is a major leading cause of death and disability. While previous studies regarding focal pathologies following TBI have been done, there is a lack of information concerning the role of analgesics and their influences on injury pathology. Buprenorphine (Bup), an opioid analgesic, is a commonly used analgesic in experimental TBI models. Our previous studies investigated the acute effects of Buprenorphine-sustained release-Lab (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. The current study investigated the longer-term chronic outcomes of Bup-SR-Lab treatment at 4 weeks following TBI utilizing a central fluid percussion injury (cFPI) model in adult male rats. Histological assessments of physiological changes, neuronal damage, cortical and thalamic cytokine expression, microglial and astrocyte morphological changes, and myelin alterations were done, as we had done in our acute study. In the current study the Whisker Nuisance Task (WNT) was also performed pre- and 4w post-injury to assess changes in somatosensory sensitivity following saline or Bup-SR-Lab treatment. Bup-SR-Lab treatment had no impact on overall physiology or neuronal damage at 4w post-injury regardless of region or injury, nor did it have any significant effects on somatosensory sensitivity. However, greater IL-4 cytokine expression with Bup-SR-Lab treatment was observed compared to saline treated animals. Microglia and astrocytes also demonstrated region-specific morphological alterations associated with Bup-SR-Lab treatment, in which cortical microglia and thalamic astrocytes were particularly vulnerable to Bup-mediated changes. There were discernable injury-specific and region-specific differences regarding myelin integrity and changes in specific myelin basic protein (MBP) isoform expression following Bup-SR-Lab treatment. This study indicates that use of Bup-SR-Lab could impact TBI-induced glial alterations in a region-specific manner 4w following diffuse brain injury.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference77 articles.

1. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007;Coronado;Morb. Mortal. Wkly. Rep. Surveill. Summ.,2011

2. Pathophysiology of Cerebral Ischemia and Brain Trauma: Similarities and Differences

3. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths — United States, 2007 and 2013

4. Epidemiological trends of traumatic brain and spinal cord injury in Puerto Rico from November 10th, 2006, through May 24th, 2011;Brau;Puerto. Rico. Health Sci. J.,2018

5. Traumatic Brain Injury Fact sheFets and Policy Brief https://www.center-tbi.eu/files/news/21571f81-20b8-4860-a3dd-1f6e27d02b3d.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3