Reliable Prediction of Caco-2 Permeability by Supervised Recursive Machine Learning Approaches

Author:

Falcón-Cano Gabriela,Molina Christophe,Cabrera-Pérez Miguel Ángel

Abstract

The heterogeneity of the Caco-2 cell line and differences in experimental protocols for permeability assessment using this cell-based method have resulted in the high variability of Caco-2 permeability measurements. These problems have limited the generation of large datasets to develop accurate and applicable regression models. This study presents a QSPR approach developed on the KNIME analytical platform and based on a structurally diverse dataset of over 4900 molecules. Interpretable models were obtained using random forest supervised recursive algorithms for data cleaning and feature selection. The development of a conditional consensus model based on regional and global regression random forest produced models with RMSE values between 0.43–0.51 for all validation sets. The potential applicability of the model as a surrogate for the in vitro Caco-2 assay was demonstrated through blind prediction of 32 drugs recommended by the International Council for the Harmonization of Technical Requirements for Pharmaceuticals (ICH) for validation of in vitro permeability methods. The model was validated for the preliminary estimation of the BCS/BDDCS class. The KNIME workflow developed to automate new drug prediction is freely available. The results suggest that this automated prediction platform is a reliable tool for identifying the most promising compounds with high intestinal permeability during the early stages of drug discovery.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3