Uncovering New Drug Properties in Target-Based Drug–Drug Similarity Networks

Author:

Udrescu LucreţiaORCID,Bogdan PaulORCID,Chiş Aimée,Sîrbu Ioan OvidiuORCID,Topîrceanu AlexandruORCID,Văruţ Renata-MariaORCID,Udrescu MihaiORCID

Abstract

Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach—based on knowledge about the chemical structures—can not fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug–target interactions to infer drug properties. To this end, we define drug similarity based on drug–target interactions and build a weighted Drug–Drug Similarity Network according to the drug–drug similarity relationships. Using an energy-model network layout, we generate drug communities associated with specific, dominant drug properties. DrugBank confirms the properties of 59.52% of the drugs in these communities, and 26.98% are existing drug repositioning hints we reconstruct with our DDSN approach. The remaining 13.49% of the drugs seem not to match the dominant pharmacologic property; thus, we consider them potential drug repurposing hints. The resources required to test all these repurposing hints are considerable. Therefore we introduce a mechanism of prioritization based on the betweenness/degree node centrality. Using betweenness/degree as an indicator of drug repurposing potential, we select Azelaic acid and Meprobamate as a possible antineoplastic and antifungal, respectively. Finally, we use a test procedure based on molecular docking to analyze Azelaic acid and Meprobamate’s repurposing.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference93 articles.

1. The cost of new drug discovery and development;Dickson;Discov. Med.,2009

2. Discovery pharmaceutics—Challenges and opportunities

3. 2016 FDA drug approvals

4. The year’s new drugs & biologics 2016: Part I;Graul;Drugs Today,2017

5. The productivity crisis in pharmaceutical R&D;Pammolli;Nat. Rev. Drug Discov.,2011

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3