Protective Efficacy of Inhaled BCG Vaccination Against Ultra-Low Dose Aerosol M. tuberculosis Challenge in Rhesus Macaques

Author:

White Andrew D.ORCID,Sarfas Charlotte,Sibley Laura S.,Gullick Jennie,Clark Simon,Rayner Emma,Gleeson Fergus,Català MartíORCID,Nogueira Isabel,Cardona Pere-JoanORCID,Vilaplana Cristina,Dennis Mike J.,Williams Ann,Sharpe Sally A.ORCID

Abstract

Ten million cases of tuberculosis (TB) were reported in 2018 with a further 1.5 million deaths attributed to the disease. Improved vaccination strategies are urgently required to tackle the ongoing global TB epidemic. In the absence of a validated correlate of protection, highly characterised pre-clinical models are required to assess the protective efficacy of new vaccination strategies. In this study, we demonstrate the application of a rhesus macaque ultra-low dose (ULD) aerosol M. tuberculosis challenge model for the evaluation of TB vaccination strategies by directly comparing the immunogenicity and efficacy of intradermal (ID) and aerosol BCG vaccination delivered using a portable vibrating mesh nebulizer (VMN). Aerosol- and ID-delivered Bacille Calmette-Guérin (BCG) induced comparable frequencies of IFN-γ spot forming units (SFU) measured in peripheral blood mononuclear cells (PBMCs) by ELISpot, although the induction of IFN-γ SFU was significantly delayed following aerosol immunisation. This delayed response was also apparent in an array of secreted pro-inflammatory and chemokine markers, as well as in the frequency of antigen-specific cytokine producing CD4 and CD8 T-cells measured by multi-parameter flow cytometry. Interrogation of antigen-specific memory T-cell phenotypes revealed that vaccination-induced CD4 and CD8 T-cell populations primarily occupied the central memory (TCM) and transitional effector memory (TransEM) phenotype, and that the frequency of CD8 TCM and TransEM populations was significantly higher in aerosol BCG-vaccinated animals in the week prior to M. tuberculosis infection. The total and lung pathology measured following M. tuberculosis challenge was significantly lower in vaccinated animals relative to the unvaccinated control group and pathology measured in extra-pulmonary tissues was significantly reduced in aerosol BCG-vaccinated animals, relative to the ID-immunised group. Similarly, significantly fewer viable M. tuberculosis CFU were recovered from the extra-pulmonary tissues of aerosol BCG-vaccinated macaques relative to unvaccinated animals. In this study, a rhesus macaque ULD M. tuberculosis aerosol challenge model was applied as a refined and sensitive system for the evaluation of TB vaccine efficacy and to confirm that aerosol BCG vaccination delivered by portable VMN can confer a significant level of protection that is equivalent, and by some measures superior, to intradermal BCG vaccination.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3