In Vitro Metabolism and Transport Characteristics of Zastaprazan

Author:

Lee Min Seo1ORCID,Lee Jihoon2,Pang Minyoung3ORCID,Kim John4ORCID,Cha Hyunju4,Cheon Banyoon4,Choi Min-Koo3,Song Im-Sook2ORCID,Lee Hye Suk1ORCID

Affiliation:

1. College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon 14662, Republic of Korea

2. BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea

3. College of Pharmacy, Dankook University, Cheonan 30019, Republic of Korea

4. Onconic Therapeutics Inc., Seoul 06236, Republic of Korea

Abstract

Zastaprazan (JP-1366), a novel potassium-competitive acid blocker, is a new drug for the treatment of erosive esophagitis. JP-1366 is highly metabolized in human, mouse, and dog hepatocytes but moderately metabolized in rat and monkey hepatocytes when estimated from the metabolic stability of this compound in hepatocyte suspension and when 18 phase I metabolites and 5 phase II metabolites [i.e., N-dearylation (M6), hydroxylation (M1, M19, M21), dihydroxylation (M7, M8, M14, M22), trihydroxylation (M13, M18), hydroxylation and reduction (M20), dihydroxylation and reduction (M9, M16), hydrolysis (M23), hydroxylation and glucuronidation (M11, M15), hydroxylation and sulfation (M17), dihydroxylation and sulfation (M10, M12), N-dearylation and hydroxylation (M3, M4), N-dearylation and dihydroxylation (M5), and N-dearylation and trihydroxylation (M2)] were identified from JP-1366 incubation with the hepatocytes from humans, mice, rats, dogs, and monkeys. Based on the cytochrome P450 (CYP) screening test and immune-inhibition analysis with CYP antibodies, CYP3A4 and CYP3A5 played major roles in the metabolism of JP-1366 to M1, M3, M4, M6, M8, M9, M13, M14, M16, M18, M19, M21, and M22. CYP1A2, 2C8, 2C9, 2C19, and 2D6 played minor roles in the metabolism of JP-1366. UDP-glucuronosyltransferase (UGT) 2B7 and UGT2B17 were responsible for the glucuronidation of M1 to M15. However, JP-1366 and active metabolite M1 were not substrates for drug transporters such as organic cation transporter (OCT) 1/2, organic anion transporter (OAT) 1/3, organic anion transporting polypeptide (OATP)1B1/1B3, multidrug and toxic compound extrusion (MATE)1/2K, P-glycoprotein (P-gp), and breast cancer-resistant protein (BCRP). Only M1 showed substrate specificity for P-gp. The findings indicated that drug-metabolizing enzymes, particularly CYP3A4/3A5, may have a significant role in determining the pharmacokinetics of zastaprazan while drug transporters may only have a small impact on the absorption, distribution, and excretion of this compound.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3