Synthesis and Preliminary Evaluation of an ASGPr-Targeted Polycationic β-Cyclodextrin Carrier for Nucleosides and Nucleotides

Author:

Ryu Jang-Ha1,Zheng Weizhong2,Yang Xiao-Hong3,Elsaidi Hassan4,Diakur Jim5,Wiebe Leonard I.6ORCID

Affiliation:

1. Independent Researcher, Hwasung-city 18245, Republic of Korea

2. Independent Researcher, Edmonton, AB T6W 1T4, Canada

3. Independent Researcher, Edmonton, AB T6G 1Z2, Canada

4. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, El Sultan Hussein St. Azarita, Alexandria 21521, Egypt

5. Independent Researcher, Winnipeg, MB R3T 0P4, Canada

6. Faculty of Pharmacy and Pharmaceutical Sciences, 2-35 Medical Sciences Building, University of Alberta, 8613-114 St., Edmonton, AB T6G 2H7, Canada

Abstract

Most antiviral and anticancer nucleosides are prodrugs that require stepwise phosphorylation to their triphosphate nucleotide form for biological activity. Monophosphorylation may be rate-limiting, and the nucleotides may be unstable and poorly internalized by target cells. Effective targeting and delivery systems for nucleoside drugs, including oligonucleotides used in molecular therapeutics, could augment their efficacy. The development of a carrier designed to effect selective transmembrane internalization of nucleotides via the asialoglycoprotein receptor (ASGPr) is now reported. In this work, the polycationic, polygalactosyl drug delivery carrier heptakis[6-amino-6-deoxy-2-O-(3-(1-thio-β-D-galactopyranosyl)-propyl)]-β-cyclodextrin hepta-acetate salt (GCyDAc), potentially a bifunctional carrier of (poly)nucleotides, was modeled by molecular docking in silico as an ASGPr-ligand, then synthesized for testing. The antivirals arabinosyl adenine (araA, vidarabine, an early generation antiviral nucleoside), arabinosyl adenine 5′-monophosphate (araAMP), and 12-mer-araAMP (p-araAMP) were selected for individual formulation with GCyDAc to develop this concept. Experimentally, beta cyclodextrin was decorated with seven protonated amino substituents on the primary face, and seven thiogalactose residues on its secondary face. AraA, araAMP, and p-araAMP were individually complexed with GCyDAc and complex formation for each drug was confirmed by differential scanning calorimetry (DSC). Finally, the free drugs and their GCyDAc complexes were evaluated for antiviral activity using ASGPr-expressing HepAD38 cells in cell culture. In this model, araA, araAMP, and p-araAMP showed relative antiviral potencies of 1.0, 1.1, and 1.2, respectively. In comparison, GCyDAc-complexes of araA, araAMP, and p-araAMP were 2.5, 1.3, and 1.2 times more effective than non-complexed araA in suppressing viral DNA production. The antiviral potencies of these complexes were minimally supportive of the hypothesis that ASGPr-targeted, CyD-based charge-association complexation of nucleosides and nucleotides could effectively enhance antiviral efficacy. GCyDAc was non-toxic to mammalian cells in cell culture, as determined using the MTS proliferation assay.

Funder

Alberta Cancer Board

Canadian Institutes for Health Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3