Evaluation of the Drug-Induced Liver Injury Potential of Saxagliptin through Reactive Metabolite Identification in Rats

Author:

Kim Ki-Young1,Jeong Yeo-Jin1,Park So-Young12,Park Eun-Ji1,Jeon Ji-Hyeon1,Song Im-Sook1ORCID,Liu Kwang-Hyeon12ORCID

Affiliation:

1. BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea

2. Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

A liver injury was recently reported for saxagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor. However, the underlying mechanisms of saxagliptin-induced liver injury remain unknown. This study aimed to evaluate whether saxagliptin, a potent and selective DPP-4 inhibitor that is globally used for treating type 2 diabetes mellitus, binds to the nucleophiles in vitro. Four DPP-4 inhibitors, including vildagliptin, were evaluated for comparison. Only saxagliptin and vildagliptin, which both contain a cyanopyrrolidine group, quickly reacted with L-cysteine to enzyme-independently produce thiazolinic acid metabolites. This saxagliptin–cysteine adduct was also found in saxagliptin-administered male Sprague–Dawley rats. In addition, this study newly identified cysteinyl glycine conjugates of saxagliptin and 5-hydroxysaxagliptin. The observed metabolic pathways were hydroxylation and conjugation with cysteine, glutathione, sulfate, and glucuronide. In summary, we determined four new thiazoline-containing thiol metabolites (cysteine and cysteinylglycine conjugates of saxagliptin and 5-hydroxysaxagliptin) in saxagliptin-administered male rats. Our results reveal that saxagliptin can covalently bind to the thiol groups of cysteine residues of endogenous proteins in vivo, indicating the potential for saxagliptin to cause drug-induced liver injury.

Funder

National Research Foundation of Korea, Ministry of Science and ICT, Republic of Korea

National Research Facilities and Equipment Center (NFEC) grant financed by the Ministry of Education, Government of South Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3