Research Progress of Extracellular Vesicles-Loaded Microneedle Technology

Author:

Wang Xue1,Cheng Wei2,Su Jiandong1

Affiliation:

1. Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China

2. Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China

Abstract

Microneedles (MNs), renowned for their painless and minimally invasive qualities, exhibit significant potential for facilitating effective drug delivery, vaccination, and targeted sample extraction. Extracellular vesicles (EVs), serving as cargo for MNs, are naturally occurring nanovesicles secreted by cells and characterized by novel biomarkers, low immunogenicity, and cell-source-specific traits. MNs prove instrumental in extracting EVs from the sample fluid, thereby facilitating a promising diagnostic and prognostic tool. To harness the therapeutic potential of EVs in tissue repair, MNs with sustained delivery of EVs leverage micron-sized channels to enhance targeted site concentration, demonstrating efficacy in treating various diseases, such as Achillea tendinopathy, hair loss, spinal cord injury, and diabetic ulcers. EV-loaded MNs emerge as a promising platform for repair applications of skin, cardiac, tendon, hair, and spinal cord tissues. This review commences with an overview of MNs, subsequently delving into the role of EVs as cargo for MNs. The paper then synthesizes the latest advancements in the use of EV-loaded MNs for tissue regenerative repair, extending to research progress in extracting EVs from MNs for disease diagnosis and prognostic evaluations. It aims to offer valuable insights and forecast future research trajectories with the hope of inspiring innovative ideas among researchers in this field.

Funder

Suzhou Burn Clinical Medical Center Project

Suzhou Key Clinical Diseases Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3