Development and Optimization of Andrographis paniculata Extract-Loaded Self-Microemulsifying Drug Delivery System Using Experimental Design Model

Author:

Pornpitchanarong Chaiyakarn1ORCID,Akkaramongkolporn Prasert1,Nattapulwat Nattawat1,Opanasopit Praneet1ORCID,Patrojanasophon Prasopchai1ORCID

Affiliation:

1. Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand

Abstract

The objectives of this study were to develop an optimized formulation for an Andrographis paniculata extract (AGPE)-loaded self-microemulsifying drug delivery system (SMEDDS) using an experimental design and evaluate the characteristics of the developed SMEDDS. The solubility of andrographolide (AGP) in various solvents was investigated. The pseudo-ternary phase was constructed to provide an optimal range for each component to form microemulsions (MEs). The formulation was optimized using an I-optimal design mixture type, where the physical stability, droplet size, polydispersity index, and zeta potential were examined. Soft capsules of the optimized AGPE-loaded SMEDDS were manufactured. The dissolution and ex vivo membrane permeation were studied. Oleic acid, Tween® 80, and PEG 400 were the best solubilizers for AGP. The promising surfactant to co-surfactant ratio to generate ME was 3:1. The optimized SMEDDS contained 68.998% Tween® 80, with 13.257% oleic acid and 17.745% PEG 400. The assayed content of AGP, uniformity of dosage unit, and stability complied with the expected specifications. The dissolution and membrane permeability of AGPE-loaded SMEDDS was significantly improved from the A. paniculata extract (p < 0.05). All in all, the developed optimized AGPE-loaded SMEDDS was proven to contain optimal composition and AGP content where a stable ME could spontaneously be formed with enhanced delivery efficacy.

Funder

Agricultural Research Development Agency

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3