Simultaneously Predicting the Pharmacokinetics of CES1-Metabolized Drugs and Their Metabolites Using Physiologically Based Pharmacokinetic Model in Cirrhosis Subjects

Author:

Luo Xin1,Zhang Zexin1ORCID,Mu Ruijing1,Hu Guangyu1,Liu Li1,Liu Xiaodong1ORCID

Affiliation:

1. Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China

Abstract

Hepatic carboxylesterase 1 (CES1) metabolizes numerous prodrugs into active ingredients or direct-acting drugs into inactive metabolites. We aimed to develop a semi-physiologically based pharmacokinetic (semi-PBPK) model to simultaneously predict the pharmacokinetics of CES1 substrates and their active metabolites in liver cirrhosis (LC) patients. Six prodrugs (enalapril, benazepril, cilazapril, temocapril, perindopril and oseltamivir) and three direct-acting drugs (flumazenil, pethidine and remimazolam) were selected. Parameters such as organ blood flows, plasma-binding protein concentrations, functional liver volume, hepatic enzymatic activity, glomerular filtration rate (GFR) and gastrointestinal transit rate were integrated into the simulation. The pharmacokinetic profiles of these drugs and their active metabolites were simulated for 1000 virtual individuals. The developed semi-PBPK model, after validation in healthy individuals, was extrapolated to LC patients. Most of the observations fell within the 5th and 95th percentiles of simulations from 1000 virtual patients. The estimated AUC and Cmax were within 0.5–2-fold of the observed values. The sensitivity analysis showed that the decreased plasma exposure of active metabolites due to the decreased CES1 was partly attenuated by the decreased GFR. Conclusion: The developed PBPK model successfully predicted the pharmacokinetics of CES1 substrates and their metabolites in healthy individuals and LC patients, facilitating tailored dosing of CES1 substrates in LC patients.

Funder

National Natural Science Foundation of China

“Double First-Class” university project

Publisher

MDPI AG

Subject

Pharmaceutical Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3