The Potential Use of Exosomes in Anti-Cancer Effect Induced by Polarized Macrophages

Author:

Abe Chizumi1,Bhaswant Maharshi1ORCID,Miyazawa Teruo1ORCID,Miyazawa Taiki1ORCID

Affiliation:

1. New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan

Abstract

The rapid development of aberrant cells outgrowing their normal bounds, which can subsequently infect other body parts and spread to other organs—a process known as metastasis—is one of the significant characteristics of cancer. The main reason why cancer patients die is because of widespread metastases. This abnormal cell proliferation varies in cancers of over a hundred types, and their response to treatment can vary substantially. Several anti-cancer drugs have been discovered to treat various tumors, yet they still have harmful side-effects. Finding novel, highly efficient targeted therapies based on modifications in the molecular biology of tumor cells is essential to reduce the indiscriminate destruction of healthy cells. Exosomes, an extracellular vesicle, are promising as a drug carrier for cancer therapy due to their good tolerance in the body. In addition, the tumor microenvironment is a potential target to regulate in cancer treatment. Therefore, macrophages are polarized toward M1 and M2 phenotypes, which are involved in cancer proliferation and are malignant. It is evident from recent studies that controlled macrophage polarization might contribute to cancer treatment, by the direct way of using miRNA. This review provides an insight into the potential use of exosomes to develop an ‘indirect’, more natural, and harmless cancer treatment through regulating macrophage polarization.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference118 articles.

1. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2020). Global Cancer Observatory: Cancer Today, International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/online-analysis-multi-bars.

2. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment;Yadav;AAPS PharmSciTech,2021

3. Progress and Challenges towards Targeted Delivery of Cancer Therapeutics;Rosenblum;Nat. Commun.,2018

4. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors;Dai;ACS Nano,2018

5. The Evolution of Commercial Drug Delivery Technologies;Vargason;Nat. Biomed. Eng.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3