Radiolabeled Dendrimer Coated Nanoparticles for Radionuclide Imaging and Therapy: A Systematic Review

Author:

Conte Miriam1,De Feo Maria Silvia1,Sidrak Marko Magdi Abdou1,Corica Ferdinando1,Gorica Joana1,Filippi Luca2ORCID,Schillaci Orazio3,De Vincentis Giuseppe1ORCID,Frantellizzi Viviana1ORCID

Affiliation:

1. Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy

2. Department of Nuclear Medicine, Santa Maria Goretti Hospital, 04100 Latina, Italy

3. Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy

Abstract

Background: Dendrimers are nanoscale-size polymers with a globular structure. They are composed of an internal core and branching dendrons with surface active groups which can be functionalized for medical applications. Different complexes have been developed for imaging and therapeutic purposes. This systematic review aims to summarize the development of newer dendrimers for oncological applications in nuclear medicine. Methods: An online literature search was conducted on Pubmed, Scopus, Medline, Cochrane Library, and Web Of Science databases selecting published studies from January 1999 to December 2022. The accepted studies considered the synthesis of dendrimer complexes for oncological nuclear medicine imaging and therapy. Results: 111 articles were identified; 69 articles were excluded because they did not satisfy the selection criteria. Thus, nine duplicate records were removed. The remaining 33 articles were included and selected for quality assessment. Conclusion: Nanomedicine has led researchers to create novel nanocarriers with high affinity for the target. Dendrimers represent feasible imaging probes and therapeutic agents since, through the functionalization of external chemical groups and thanks to the possibility to carry pharmaceuticals, it can be possible to exploit different therapeutic strategies and develop a useful weapon for oncological treatments.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3