Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application

Author:

Li Kun1,Zhu Zhijun2,Zhai Yanling2,Chen Shaojuan1

Affiliation:

1. College of Textile & Clothing, Qingdao University, Qingdao 266071, China

2. College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China

Abstract

Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.

Funder

Construction of bio polysaccharide micro nanofiber textiles

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference173 articles.

1. Literature review on the management of diabetic foot ulcer;Yazdanpanah;World J. Diabetes,2015

2. And at last, the Wound is Healed… or, is it?! In Search of an Objective Way to Predict the Recurrence of Diabetic Foot Ulcers;Hajhosseini;Plast. Reconstr. Surg.–Glob. Open,2019

3. A Systematic Review on Classification, Identification, and Healing Process of Burn Wound Healing;Abazari;Int. J. Lower Extr. Wound,2022

4. Cost of diabetic foot disease to the National Health Service in England;Kerr;Diabetic Med.,2014

5. Burgess, J.L., Wyant, W.A., Abdo Abujamra, B., Kirsner, R.S., and Jozic, I. (2021). Diabetic Wound-Healing Science. Medicina, 57.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3