Lactone Stabilized by Crosslinked Cyclodextrin Metal-Organic Frameworks to Improve Local Bioavailability of Topotecan in Lung Cancer

Author:

Xiong Ting,Guo Tao,He Yaping,Cao Zeying,Xu Huipeng,Wu Wenting,Wu Li,Zhu Weifeng,Zhang JiwenORCID

Abstract

The protection of unstable anticancer molecules and their delivery to lesions are challenging issues in cancer treatment. Topotecan (TPT), a classic cytotoxic drug, is widely used for treating refractory lung cancer. However, the therapeutic effects of TPT are jeopardized by its active lactone form that is intrinsically hydrolyzed in physiological fluids, resulting in low bioavailability. Herein, the TPT-loaded crosslinked cyclodextrin metal-organic framework (TPT@CL-MOF) was engineered to improve the local bioavailability of TPT for the treatment of lung cancer. CL-MOF exhibited the efficient loading (12.3 wt%) of TPT with sustained release characteristics. In particular the formulation offered excellent protection in vitro against hydrolysis and increased the half-life of TPT from approximately 0.93 h to 22.05 h, which can be attributed to the host–guest interaction between cyclodextrin and TPT, as confirmed by molecular docking. The TPT@CL-MOF could effectively kill the cancer cells and inhibit the migration and invasion of B16F10 cells in vitro. Moreover, TPT@CL-MOF was efficiently distributed in the lungs after intravenous administration. In an in vivo study using a B16F10 pulmonary metastatic tumor model, TPT@CL-MOF significantly reduced the number and size of metastatic lung nodules at a reduced low dose by five times, and no noticeable side effects were observed. Therefore, this study provides a possible alternative therapy for the treatment of lung cancer with the camptothecin family drugs or other unstable therapeutically significant molecules.

Funder

Key Program for International Science and Technology Cooperation Projects of China

Innovation Leading Talents Short-term Program of Jiangxi Province, China

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3