Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease

Author:

Shivananjegowda Meghana GoravinahalliORCID,Hani UmmeORCID,Osmani Riyaz Ali M.ORCID,Alamri Ali H.ORCID,Ghazwani Mohammed,Alhamhoom YahyaORCID,Rahamathulla MohamedORCID,Paranthaman Sathishbabu,Gowda Devegowda VishakanteORCID,Siddiqua AyeshaORCID

Abstract

Aggregation of Amyloid-β (Aβ) leads to the formation and deposition of neurofibrillary tangles and plaques which is the main pathological hallmark of Alzheimer’s disease (AD). The bioavailability of the drugs and their capability to cross the BBB plays a crucial role in the therapeutics of AD. The present study evaluates the Memantine Hydrochloride (MeHCl) and Tramiprosate (TMPS) loaded solid lipid nanoparticles (SLNs) for the clearance of Aβ on SHSY5Y cells in rat hippocampus. Molecular docking and in vitro Aβ fibrillation were used to ensure the binding of drugs to Aβ. The in vitro cell viability study showed that the M + T SLNs showed enhanced neuroprotection against SHSY5Y cells than the pure drugs (M + T PD) in presence of Aβ (80.35µM ± 0.455 µM) at a 3:1 molar ratio. The Box–Behnken Design (BBD) was employed to optimize the SLNs and the optimized M + T SLNs were further characterized by %drug entrapment efficiency (99.24 ± 3.24 of MeHCl and 89.99 ± 0.95 of TMPS), particle size (159.9 ± 0.569 nm), PDI (0.149 ± 0.08), Zeta potential (−6.4 ± 0.948 mV), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and in vitro drug release. The TEM & AFM analysis showed irregularly spherical morphology. In vitro release of SLNs was noted up to 48 h; whereas the pure drugs released completely within 3 hrs. M + T SLNs revealed an improved pharmacokinetic profile and a 4-fold increase in drug concentration in the brain when compared to the pure drug. Behavioral tests showed enhanced spatial memory and histological studies confirmed reduced Aβ plaques in rat hippocampus. Furthermore, the levels of Aβ decreased in AlCl3-induced AD. Thus, all these noted results established that the M + T SLNs provide enhanced neuroprotective effects when compared to pure and individual drugs and can be a promising therapeutic strategy for the management of AD.

Funder

Deanship of Scientific Research at King Khalid University, Saudi Arabia

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference42 articles.

1. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease;Sabermarouf;Med. Princ. Pract.,2015

2. (2020, July 17). Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia.

3. What Is the Physiological Function of Amyloid-Beta Protein?;Morley;J. Nutr. Health Aging,2019

4. Amyloid Precursor Protein Processing and Alzheimer’s Disease;Wong;Annu. Rev. Neurosci.,2011

5. Treatment of Alzheimer’s Disease; Current Status and New Perspectives;Scarpini;Lancet Neurol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3