Development of Autopolymerizing Resin Material with Antimicrobial Properties Using Montmorillonite and Nanoporous Silica

Author:

Otsubo Shuhei1ORCID,Nakanishi Ko2,Fukukawa Kakufu3,Endo Ryoshun1,Yoshida Seiichiro4,Matsumoto Aiko1,Yoshihara Kumiko5ORCID,Akasaka Tsukasa2,Hasebe Akira6,Yoshida Yasuhiro2,Sato Yoshiaki1

Affiliation:

1. Department of Orthodontics, Faculty of Dental Medicine, Hokkaido University, Kita13, Nishi7, Kita-ku, Sapporo 060-8586, Japan

2. Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita13, Nishi7, Kita-ku, Sapporo 060-8586, Japan

3. Department of Oral Functional Prosthodontics, Faculty of Dental Medicine, Hokkaido University, Kita13, Nishi7, Kita-ku, Sapporo 060-8586, Japan

4. Industrial Research Institute, Industrial Technology and Environment Research Department, Hokkaido Research Organization, Sapporo 060-0819, Japan

5. National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Takamatsu 761-0395, Japan

6. Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita13, Nishi7, Kita-ku, Sapporo 060-8586, Japan

Abstract

Although autopolymerizing resin offers numerous applications in orthodontic treatment, plaque tends to accumulate between the appliance and the mucosa, which increases the number of microorganisms present. In this study, we added cetylpyridinium chloride (CPC) loaded montmorillonite (Mont) and nanoporous silica (NPS) to autopolymerizing resin (resin-Mont, resin-NPS) and evaluated their drug release capacity, antimicrobial capacity, drug reuptake capacity, mechanical strength, and color tone for the devolvement of autopolymerizing resin with antimicrobial properties. As observed, resin-Mont and resin-NPS were capable of the sustained release of CPC for 14 d, and a higher amount of CPC was released compared to that of resin-CPC. Additionally, resin-Mont and resin-NPS could reuptake CPC. Moreover, the antimicrobial studies demonstrated that resin-Mont and resin-NPS could release effective amounts of CPC against Streptococcus mutans for 14 d and 7 d after reuptake, respectively. Compared to resin-CPC, resin-Mont exhibited a higher sustained release of CPC in all periods, both in the initial sustained release and after reuptake. However, the mechanical strength decreased with the addition of Mont and NPS, with a 36% reduction observed in flexural strength for resin-Mont and 25% for resin-NPS. The application of these results to the resin portion of the orthodontic appliances can prevent bacterial growth on the surface, as well as on the interior, of the appliances and mitigate the inflammation of the mucosa.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3