Photobiomodulation in Alzheimer’s Disease—A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine?

Author:

Ailioaie Laura Marinela1ORCID,Ailioaie Constantin1,Litscher Gerhard2ORCID

Affiliation:

1. Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania

2. President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria

Abstract

Alzheimer’s disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference313 articles.

1. Alzheimer disease;Knopman;Nat. Rev. Dis. Primers.,2021

2. History and progress of hypotheses and clinical trials for Alzheimer’s disease;Liu;Signal Transduct. Target. Ther.,2019

3. Dominantly Inherited Alzheimer Network. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease;Li;Nat. Med.,2020

4. Synergy between amyloid-β and tau in Alzheimer’s disease;Busche;Nat. Neurosci.,2020

5. The World Health Organization (2022, December 07). The Top 10 Causes of Death. 9 December 2020, Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3