Nanotechnology Applications in Sepsis: Essential Knowledge for Clinicians

Author:

Vasconcelos Inês12ORCID,Santos Tiago1ORCID

Affiliation:

1. School of Medicine, University of Minho, 4710-057 Braga, Portugal

2. Department of Surgery and Physiology, Cardiovascular Research and Development Center—UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal

Abstract

Sepsis is a life-threatening condition caused by a dysregulated host response to an invading pathogen such as multidrug-resistant bacteria. Despite recent advancements, sepsis is a leading cause of morbidity and mortality, resulting in a significant global impact and burden. This condition affects all age groups, with clinical outcomes mainly depending on a timely diagnosis and appropriate early therapeutic intervention. Because of the unique features of nanosized systems, there is a growing interest in developing and designing novel solutions. Nanoscale-engineered materials allow a targeted and controlled release of bioactive agents, resulting in improved efficacy with minimal side effects. Additionally, nanoparticle-based sensors provide a quicker and more reliable alternative to conventional diagnostic methods for identifying infection and organ dysfunction. Despite recent advancements, fundamental nanotechnology principles are often presented in technical formats that presuppose advanced chemistry, physics, and engineering knowledge. Consequently, clinicians may not grasp the underlying science, hindering interdisciplinary collaborations and successful translation from bench to bedside. In this review, we abridge some of the most recent and most promising nanotechnology-based solutions for sepsis diagnosis and management using an intelligible format to stimulate a seamless collaboration between engineers, scientists, and clinicians.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3