System Analysis Based on Lipid-Metabolism-Related Genes Identifies AGT as a Novel Therapy Target for Gastric Cancer with Neoadjuvant Chemotherapy

Author:

Zhu Le1,Ma Ming2,Zhang Lumin1,Wang Shun1,Guo Yu1,Ling Xinxin1,Lin Hanchao1,Lai Nannan1,Lin Shengli3,Du Ling1,Dong Qiongzhu1ORCID

Affiliation:

1. Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China

2. Gastroenterology Department of Minhang Hospital, Fudan University, Shanghai 201199, China

3. Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University & Shanghai Collaborative Innovation Center of Endoscopy, Shanghai 200032, China

Abstract

Gastric cancer (GC) is one of the most common causes of cancer-related deaths worldwide, and chemotherapy is still a standard strategy for treating patients with advanced GC. Lipid metabolism has been reported to play an important role in the carcinogenesis and development of GC. However, the potential values of lipid-metabolism-related genes (LMRGs) concerning prognostic value and the prediction of chemotherapy responsiveness in GC remains unclear. A total of 714 stomach adenocarcinoma patients were enrolled from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Using univariate Cox and LASSO regression analyses, we developed a risk signature based on LMRGs that can distinguish high-GC-risk patients from low-risk patients with significant differences in overall survival. We further validated this signature prognostic value using the GEO database. The R package “pRRophetic” was applied to calculate the sensitivity of each sample from high- and low-risk groups to chemotherapy drugs. The expression of two LMRGs, AGT and ENPP7, can predict the prognosis and response to chemotherapy in GC. Furthermore, AGT significantly promoted GC growth and migration, and the downregulation of AGT enhanced the chemotherapy response of GC both in vitro and in vivo. Mechanistically, AGT induced significant levels of epithelial–mesenchymal transition (EMT) through the PI3K/AKT pathway. The PI3K/AKT pathway agonist 740 Y-P can restore the EMT of GC cells impaired by AGT knockdown and treatment with 5-fluorouracil. Our findings suggest that AGT plays a key role in the development of GC, and targeting AGT may help to improve the chemotherapy response of GC patients.

Funder

The National Key Research and Development Program of China

The Shanghai International Science and Technology Collaboration Program

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3