Central Composite Design for Optimization of Mitomycin C-Loaded Quantum Dots/Chitosan Nanoparticles as Drug Nanocarrier Vectors

Author:

Manan Fariza Aina AbdORCID,Yusof Nor Azah,Abdullah JaafarORCID,Nurdin Armania

Abstract

Cancer is one of the most devastating diseases that leads to a high degree of mortality worldwide. Hence, extensive efforts have been devoted to the development of drug nanocarrier vectors as a potential new cancer treatment option. The main goal of this treatment is to deliver an anticancer medicine successfully and effectively to the patient’s cells using non-toxic nanocarriers. Here, we present a drug delivery system to emphasize the optimization of an anticancer drug-loaded formulation using Mitomycin C (MMC) encapsulated in chitosan nanocarrier conjugated with a bioimaging fluorescence probe of Mn:ZnS quantum dots (MMC@CS-Mn:ZnS). Additionally, the Response Surface Methodology (RSM), which uses a quadratic model to forecast the behaviour of the nano-drug delivery system, was used to assess the optimization of encapsulation efficiency. In this investigation, the core points of the Central Composite Design (CCD) model were used with 20 runs and 6 replications. The encapsulation efficiency (EE%) was measured using UV-Vis spectroscopy at 362 nm. The highest EE% is 55.31 ± 3.09 under the optimum parameters of incubation time (105 min), concentration of MMC (0.875 mg/mL), and concentration of nanocarriers (5.0 mg/mL). Physicochemical characterizations for the nanocarriers were accessed using a nanosizer and field-emission scanning electron microscopy (FESEM). Three independent variables for the evaluation of the encapsulation efficiency were used, in which the incubation time, concentration of MMC, concentration of nanocarriers, and correlation for each variable were studied. Furthermore, the MMC drug release efficiency was carried out in four different solution pHs of 5.5, 6.0, 6.5, 7.0, and pH 7.5, and the highest cumulative drug release of 81.44% was obtained in a pH 5.5 release medium, followed by cumulative releases of 68.55%, 50.91%, 41.57%, and 32.45% in release mediums with pH 6.0, pH 6.5, pH 7.0, and pH 7.5. Subsequently, five distinct mathematical models—pseudo-first-order, pseudo-second-order, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic models—were used to fit all of the drug release data. The Korsmeyers-Peppas model was found to fit it well, highlighting its importance for the log of cumulative drug release proportional to the log of time at the equilibrium state. The correlation coefficient value (R2) was obtained as 0.9527, 0.9735, 0.9670, 0.9754, and 0.9639 for the drug release in pH 5.5, pH 6.0, pH 6.5, pH 7.0, and pH 7.5, respectively. Overall, from the analysis, the as-synthesized MMC nanocarrier (MMC@CS-Mn:ZnS) synergistically elucidates the underlying efficient delivery of MMC and leverages the drug loading efficiency, and all these factors have the potential for the simultaneous curbing of non-muscle invasive bladder cancer reoccurrence and progression when applied to the real-time disease treatment.

Funder

Universiti Putra Malaysia (UPM) and the Ministry of Higher Education of Malaysia under the IPB research grant

UPM

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference44 articles.

1. The effect of tumor grade heterogeneity on recurrence in non-muscle invasive bladder cancer Tag edEn;Ho;Urol. Oncol. Semin. Orig. Investig.,2022

2. Screening adults for bladder cancer: A review of the evidence for the US preventive services task force;Chou;Ann. Intern. Med.,2010

3. European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel;Sylvester;Eur. Urol.,2020

4. Genome-wide Meta-analysis Identifies Novel Genes Associated with Recurrence and Progression in Non—muscle-invasive Bladder Cancer;Galesloot;Eur. Urol. Oncol.,2021

5. Clinical therapies and nano drug delivery systems for urinary bladder cancer;Jain;Pharmacol. Ther.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Software Cost Estimation using COCOMO Cost Driver Features with Battle Royale Optimization and Quantum Ensemble Meta-Regression Technique;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3