Formation of Ciprofloxacin–Isonicotinic Acid Cocrystal Using Mechanochemical Synthesis Routes—An Investigation into Critical Process Parameters

Author:

Karimi-Jafari Maryam,Ziaee AhmadORCID,O’Reilly Emmet,Croker Denise,Walker Gavin

Abstract

The mechanochemical synthesis of cocrystals has been introduced as a promising approach of formulating poorly water-soluble active pharmaceutical ingredients (APIs). In this study, hot-melt extrusion (HME) as a continuous process and grinding and ball milling as batch processes were employed to explore the feasibility of cocrystallization. Ciprofloxacin (CIP) and isonicotinic acid (INCA) were selected as the model API and coformer. CIP–INCA cocrystal was produced in all techniques. It was revealed that higher cocrystal content could be achieved at longer durations of grinding and ball milling. However, milling for more than 10 min led to increased co-amorphous content instead of cocrystal. A design of experiment (DoE) approach was used for deciphering the complex correlation of screw configuration, screw speed, and temperature as HME process parameters and their respective effect on final relative cocrystal yield. Statistical analysis showed that screw configuration, temperature, and their interaction were the most critical factors affecting cocrystallization. Interestingly, screw speed had minimal impact on the relative cocrystallization yield. Cocrystallization led to increased dissolution rate of CIP in phosphate buffer up to 2.5-fold. Overall, this study shed a light on the potential of mechanochemical synthesis techniques with special focus on HME as a continuous process for producing cocrystals.

Funder

Science Foundation Ireland

National Science Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3