Multi-Strain-Probiotic-Loaded Nanoparticles Reduced Colon Inflammation and Orchestrated the Expressions of Tight Junction, NLRP3 Inflammasome and Caspase-1 Genes in DSS-Induced Colitis Model

Author:

Alkushi Abdullah Glil,Elazab Sara T.ORCID,Abdelfattah-Hassan AhmedORCID,Mahfouz Hala,Salem Gamal A.,Sheraiba Nagwa I.,Mohamed Eman A. A.,Attia Mai S.,El-Shetry Eman S.,Saleh Ayman A.,ElSawy Naser A.ORCID,Ibrahim DoaaORCID

Abstract

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1β expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3