Combined Curcumin and Lansoprazole-Loaded Bioactive Solid Self-Nanoemulsifying Drug Delivery Systems (Bio-SSNEDDS)

Author:

Alshadidi Abdulrahman,Shahba Ahmad Abdul-WahhabORCID,Sales IbrahimORCID,Rashid Md Abdur,Kazi MohsinORCID

Abstract

Background: The current study aimed to design a novel combination of lansoprazole (LNS) and curcumin (CUR) solid oral dosage form using bioactive self-nanoemulsifying drug delivery systems (Bio-SSNEDDS). Methods: Liquid SNEDDS were prepared using the lipid-excipients: Imwitor988 (cosurfactant), Kolliphor El (surfactant), the bioactive black seed (BSO) and/or zanthoxylum rhetsa seed oils (ZRO). Liquid SNEDDS were loaded with CUR and LNS, then solidified using commercially available (uncured) and processed (cured) Neusilin® US2 (NUS2) adsorbent. A novel UHPLC method was validated to simultaneously quantify CUR and LNS in lipid-based formulations. The liquid SNEDDS were characterized in terms of self-emulsification, droplet size and zeta-potential measurements. The solidified SNEDDS were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), in vitro dissolution and stability in accelerated storage conditions. Results: Liquid SNEDDS containing BSO produced a transparent appearance and ultra-fine droplet size (14 nm) upon aqueous dilution. The solidified SNEDDS using cured and uncured NUS2 showed complete solidification with no particle agglomeration. DSC and XRD confirmed the conversion of crystalline CUR and LNS to the amorphous form in all solid SNEDDS samples. SEM images showed that CUR/LNS-SNEDDS were relatively spherical and regular in shape. The optimized solid SNEDDS showed higher percent of cumulative release as compared to the pure drugs. Curing NUS2 with 10% PVP led to significant enhancement of CUR and LNS dissolution efficiencies (up to 1.82- and 2.75-fold, respectively) compared to uncured NUS2-based solid SNEDDS. These findings could be attributed to the significant (50%) reduction in the micropore area% in cured NUS2 which reflects blocking very small pores allowing more space for the self-emulsification process to take place in the larger-size pores. Solid SNEDDS showed significant enhancement of liquid SNEDDS stability after 6 months storage in accelerated conditions. Conclusions: The developed Bio-SSNEDDS of CUR and LNS using processed NUS2 could be used as a potential combination therapy to improve the treatment of peptic ulcers.

Funder

King Saud University

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3