Surface-Functionalized NdVO4:Gd3+ Nanoplates as Active Agents for Near-Infrared-Light-Triggered and Multimodal-Imaging-Guided Photothermal Therapy

Author:

Deng Kerong,Liu Donglian,Wang Ziyan,Zhou Zhaoru,Chen Qianyi,Luo Jiamin,Zhang Yaru,Hou Zhiyao,Lin Jun

Abstract

Development of nanotheranostic agents with near-infrared (NIR) absorption offers an effective tool for fighting malignant diseases. Lanthanide ion neodymium (Nd3+)-based nanomaterials, due to the maximum absorption at around 800 nm and unique optical properties, have caught great attention as potential agents for simultaneous cancer diagnosis and therapy. Herein, we employed an active nanoplatform based on gadolinium-ion-doped NdVO4 nanoplates (NdVO4:Gd3+ NPs) for multiple-imaging-assisted photothermal therapy. These NPs exhibited enhanced NIR absorption and excellent biocompatibility after being grafted with polydopamine (pDA) and bovine serum albumin (BSA) layers on their surface. Upon expose to an 808 nm laser, these resulting NPs were able to trigger hyperthermia rapidly and cause photo-destruction of cancer cells. In a xenograft tumor model, tumor growth was also significantly inhibited by these photothermal agents under NIR laser irradiation. Owing to the multicomponent nanostructures, we demonstrated these nanoagents as being novel contrast agents for in vivo magnetic resonance (MR) imaging, X-ray computed tomography (CT), photoacoustic (PA) imaging, and second biological window fluorescent imaging of tumor models. Thus, we believe that this new kind of nanotherapeutic will benefit the development of emerging nanosystems for biological imaging and cancer therapy.

Funder

Science and Technology Cooperation Project between Chinese and Australian Governments

the National Natural Science Foundation of China

CAS-Croucher Funding Scheme for Joint Laboratories

Guangdong Natural Science Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3