Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen

Author:

Lamparelli Erwin Pavel,Casagranda Veronica,Pressato Daniele,Maffulli Nicola,Della Porta GiovannaORCID,Bellini Davide

Abstract

Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.

Funder

University of Salerno

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3