Two Innovative Approaches to Optimize Vancomycin Dosing Using Estimated AUC after First Dose: Validation Using Data Generated from Population PK Model Coupled with Monte-Carlo Simulation and Comparison with the First-Order PK Equation Approach

Author:

Liu Qingxia,Huang Huiping,Xu Baohua,Li Dandan,Liu Maobai,Shaik Imam H.,Wu Xuemei

Abstract

The revised consensus guidelines for optimizing vancomycin doses suggest that maintaining the area under the concentration-time curve to minimal inhibitory concentration ratio (AUC/MIC) of 400–600 mg·h/L is the target pharmacokinetic/pharmacodynamic (PK/PD) index for efficacy. AUC-guided dosing approach uses a first-order pharmacokinetics (PK) equation to estimate AUC using two samples obtained at steady state and one-compartment model, which can cause inaccurate AUC estimation and fail to achieve the effective PK/PD target early in therapy (days 1 and 2). To achieve an efficacy target from the third or fourth dose, two innovative approaches (Method 1 and Method 2) to estimate vancomycin AUC at steady state (AUCSS) using two-compartment model and three or four levels after the first dose are proposed. The feasibility of the proposed methods was evaluated and compared with another published dosing algorithm (Method 3), which uses two samples and a one-compartment approach. Monte Carlo simulation was performed using a well-established population PK model, and concentration-time profiles for virtual patients with various degrees of renal function were generated, with 1000 subjects per group. AUC extrapolated to infinity (AUC0–∞) after the first dose was estimated using the three methods, whereas reference AUC (AUCref) was calculated using the linear-trapezoidal method at steady state after repeated doses. The ratio of AUC0–∞: AUCref and % bias were selected as the indicators to evaluate the accuracy of three methods. Sensitivity analysis was performed to examine the influence of change in each sampling time on the estimated AUC0–∞ using the two proposed approaches. For simulated patients with various creatinine clearance, the mean of AUC0–∞: AUCref obtained from Method 1, Method 2 and Method 3 ranged between 0.98 to 1, 0.96 to 0.99, and 0.44 to 0.69, respectively. The mean bias observed with the three methods was −0.10% to −2.09%, −1.30% to −3.59% and −30.75% to −55.53%, respectively. The largest mean bias observed by changing sampling time while using Method 1 and Method 2 were −4.30% and −10.50%, respectively. Three user-friendly and easy-to-use excel calculators were built based on the two proposed methods. The results showed that our approaches ensured sufficient accuracy and achieved target PK/PD index early and were superior to the published methodologies. Our methodology has the potential to be used for vancomycin dose optimization and can be easily implemented in clinical practice.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3