Affiliation:
1. Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
2. Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang 421001, China
3. Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361005, China
Abstract
Background/Objectives: Blepharitis is a condition often caused by Demodex folliculorum infestations, resulting in significant ocular discomfort and surface damage. Current treatments offer only temporary relief and fail to eliminate mites effectively. This study evaluates nano-niclosamide (nano-NCL), a lipophilic nanosuspension designed to enhance solubility and permeability, for targeting Demodex folliculorum. Methods: Nano-NCL was characterized by particle size, zeta potential, transmission electron microscopy, pH measurement, bacterial culture, and HPLC. Viable Demodex mites were collected from patients’ eyelashes and assigned to six treatment groups: DDW, F127, 0.15% nano-NCL, 0.3% nano-NCL, 20% TTO, and Okra. Mite survival was analyzed using Kaplan–Meier curves. The ocular surface safety was assessed via slit-lamp examination, corneal fluorescein staining, and in vivo confocal microscopy. Results: The nano-NCL particles are uniformly rod-shaped, approximately 291 nm in size, and exhibit good stability, remaining suspended in various media for up to 20 days. The formulation has a stable pH of 6 and demonstrated no bacterial growth, indicating sterility and suitability for clinical use. In vitro, both 0.15% (w/v) and 0.30% (w/v) nano-NCL significantly reduced Demodex survival, with mortality rates ranging from 70.6% to 92.3% within 2 h. Safety evaluations showed minimal corneal staining and inflammation. Notably, 0.15% nano-NCL displayed efficacy comparable to that of 20% tea tree oil (TTO) and Okra, which are established anti-Demodex treatments. Conclusions: Nano-NCL, particularly at 0.15%, rapidly eliminates mites while maintaining excellent ocular tolerability, making it a promising treatment for Demodex-related ocular surface diseases.
Funder
National Natural Science Foundation of China
the China Postdoctoral Science Foundation
the Natural Science Foundation of Hunan Province