Unlocking the Potential of Ganoderma lucidum (Curtis): Botanical Overview, Therapeutic Applications, and Nanotechnological Advances

Author:

Eira Ana1ORCID,Gonçalves Maria Beatriz S.1,Fongang Yannick Stéphane Fotsing2ORCID,Domingues Cátia134ORCID,Jarak Ivana1,Mascarenhas-Melo Filipa56ORCID,Figueiras Ana13ORCID

Affiliation:

1. Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal

2. Higher Teachers’ Training College, The University of Maroua, Maroua P.O. Box 55, Cameroon

3. Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal

4. Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CI MAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal

5. Higher School of Health, Polytechnic Institute of Guarda, 6300-307 Guarda, Portugal

6. BRIDGES—Biotechnology Research, Innovation and Design of Health Products, Polytechnic University of Guarda, 6300-559 Guarda, Portugal

Abstract

Background: Ganoderma lucidum (GL), commonly known as the “Lingzhi” or “Reishi” mushroom, has long been recognized for its potential health benefits and medicinal properties in traditional Chinese medicine. The unique potential combination of bioactive compounds present in GL, such as triterpenoids, polysaccharides, and peptides, has inspired interest in leveraging their therapeutic potential In recent years, the emerging field of nanotechnology has opened up new possibilities for using the remarkable properties of GL at the nanoscale. Objetive: The main objective of this review is to explore the unique potential of GL in traditional and innovative therapies, particularly in cancer treatment, and to assess how nanotechnology-based strategies can enhance its therapeutic applications.is to explore. Results: Nanotechnology-based strategies have been investigated for the efficient extraction and purification of bioactive compounds from GL. Additionally, nanocarriers and nanoformulations have been developed to protect these sensitive bioactive compounds from degradation, ensuring their stability during storage and transportation. The use of GL-based nanomaterials has shown promising results in several biomedical applications, namely due to their anticancer activity by targeting cancer cells, inducing apoptosis, and inhibiting tumor growth. Conclusions: The combination of GL and nanotechnology presents an exciting frontier in the development of novel therapeutic and biomedical applications. Nevertheless, further research and development in this interdisciplinary field are warranted to fully exploit the synergistic benefits offered by GL and nanotechnology. Future prospects include the development of robust clinical trials focused on GL nanotechnology-based cancer therapies to clarify mechanisms of actions and optimize formulations, ultimately leading to innovative solutions for human health and well-being.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3