Generating Digital Twins for Path-Planning of Autonomous Robots and Drones Using Constrained Homotopic Shrinking for 2D and 3D Environment Modeling

Author:

Denk MartinORCID,Bickel Sebastian,Steck PatrickORCID,Götz StefanORCID,Völkl Harald,Wartzack SandroORCID

Abstract

A digital twin describes the virtual representation of a real process. This twin is constantly updated with real data and can thus control and adapt the real model. Designing suitable digital twins for path planning of autonomous robots or drones is often challenging due to the large number of different dynamic environments and multi-task and agent systems. However, common path algorithms are often limited to two tasks and to finding shortest paths. In real applications, not only a short path but also the width of the passage with a path as centered as possible are crucial, since robotic systems are not ideal and require recalibration frequently. In this work, so-called homotopic shrinking is used to generate the digital twin, which can be used to extract all possible path proposals including their passage widths for 2D and 3D environments and multiple tasks and robots. The erosion of the environment is controlled by constraints such that the task stations, the robot or drone positions, and the topology of the environment are considered. Such a deterministic path algorithm can flexibly respond to changing environmental conditions and consider multiple tasks simultaneously for path generation. A distinctive feature of these paths is the central orientation to the non-passable areas, which can have significant benefits for worker and patient safety. The method is tested on 2D and 3D maps with different tasks, obstacles, and multiple robots. For example, the robust generation of the digital twin for a maze and also the dynamic adaptation in case of sudden changes in the environment is covered. This variety of use cases and the comparison with alternative methods result in significant advantages, such as high robustness, consideration of multiple targets, and high safety distances to obstacles and areas that cannot be traversed. Finally, it was shown that the environment for the digital twin can be reduced to reasonable paths by constrained shrinking, both for real 2D maps and for complex virtual 2D and 3D maps.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3