Dynamic Pathway Selection Mechanisms of Brain Networks

Author:

Chen Yanhui,Hu Yun,Liu Jinhui,Wang Yu,Li Aiting

Abstract

Based on the dynamic reorganization mechanism of brain science and the fact that synaptic adaptability is affected by synaptic type, synaptic number and ion concentration, a bionic dynamic synaptic model is proposed and applied to a motif model and brain-like network model. By extracting the phase synchronization characteristics of the neural signals of node pairs in time sequence, and then deeply studying the regulation and control effect of synchronous discharge activities on effective links under the action of stimulating information, the path selection strategy is designed with the goal of maximizing the information transmission capacity between nodes. Four indicators are proposed: (1) pathway-synchronization-facilitation; (2) pathway-activation; (3) pathway-phase-selectivity; (4) pathway-switching-selectivity, which are used as the main basis for path selection in the network. The results show that the in-phase and anti-phase transition of neuron nodes under the action of time delay is an important way to form an effective link, and, in addition to the influence of synaptic strength and the number of central nodes on synchronization characteristics, the phase information carried by the stimulus signal also regulates the path selection. Furthermore, the paths between the pairs of stimulus nodes in the network have different phase preferences. In the brain-like network with twenty nodes, it is found that nearly 42% of the stimulus nodes have a strong phase preference; that is, the path can be selected and switched through the phase information carried by the information flow, and then the path with better representation information can be found. It also provides a new idea for how brain-like intelligences might better represent information.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UAV path planning based on GA search;2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI);2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3