Association Rule Mining-Based Generalized Growth Mode Selection: Maximizing the Value of Retired Mechanical Parts

Author:

Guo Yuyao1,Wang Lei12,Zhang Zelin2,Cao Jianhua1ORCID,Xia Xuhui12

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Ministry of Education, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Due to the inability to restore the original performance, a significant portion of retired mechanical products is often replaced with new ones and discarded or recycled as low-value materials. This practice leads to energy waste and a decline in their residual value. The generalized growth remanufacturing model (GGRM) presents opportunities to enhance the residual value of retired products and parts. It achieves this by incorporating a broader range of growth modes compared to traditional restorative remanufacturing approaches. The selection of the growth mode is a crucial step to achieve GGRM. However, there is a limited number of growth mode selection methods that are specifically suitable for GGRM. The capacity and efficiency of the method are also significant factors to consider. Therefore, we propose a growth mode selection method based on association rule mining. This method consists of three main steps: Firstly, the ReliefF method is used to select the core failure characteristics of retired parts. Secondly, a genetic algorithm (GA) is employed to identify the association between core failure characteristics, repair technology, and maximum recoverability. Finally, based on the maximum recoverability, the appropriate growth mode is selected for each retired part. We conduct a case study on retired automobile universal transmission, and the results demonstrate the feasibility, efficiency, and accuracy of the proposed method.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3