Simulating Operating Performance of Alternative Configurations of LNG Bunkering Stations

Author:

Bruzzone Agostino1,Sciomachen Anna2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Genoa, 16100 Genoa, Italy

2. Department of Economics and Business Studies, University of Genoa, 16100 Genoa, Italy

Abstract

Recently, due to the great need to promote environmentally sustainable maritime transport, alternative energy sources to traditional fossil fuels have been proposed to reduce ship emissions. Among few alternative scenarios, most experts recognize Liquefied Natural Gas (LNG) as the most promising solution in the short to medium term. However, there are still some critical issues related to the future expansion of bunkering stations and the LNG-fuelled fleet. Firstly, there is the need for a sufficiently extensive international network of bunkering facilities. Secondly, the layout and location of bunkering stations impact the efficiency of ship bunkering operations, cost reduction and the safety of the surrounding areas. Last, the in-progress Russian-Ukrainian conflict is causing serious unbalances in gas supply and prices, especially for Europe. Specifically, in the case of Italy, gas imports represent the seventh most imported commodity. Due to the changed geopolitical scenarios, interest has arisen in investigating the technical and operational characteristics of LNG bunkering stations and comparing different configurations with a view to increasing Italy’s independence from other foreign countries, focusing on degasifies that could promote new infrastructures that make available LNG in ports. In this paper we highlight the importance of reducing ship emissions and investigate some technical and operational characteristics of LNG bunkering stations. We present a simulation study to analyse quantitatively the operating performance of different LNG bunkering technologies in a port terminal and their impact on the efficiency and overall cost within the whole goods’ supply chain. In particular, we evaluate and compare bunkering time, throughput and refuelling costs in alternative layouts, referring to marine terminals located near urban areas. The aim of this research is to verify whether ports with infrastructure embedded in metropolitan areas could provide, safely, a valuable contribution to the green transition by efficiently handling an adequate level of LNG supply, especially referring to the present Italian interest in increasing independence from foreign countries. For this purpose, we present four dynamic discrete event simulations of all the main LNG bunkering configurations and present their dynamic performance sampled over two consecutive years after a warmup period of 6 months. The simulation conceptual models have been created by the authors based on analyses of those configurations and then processed and implemented within the simulation software Witness Horizon 23®, used for experimentation. This is the first time that a simulation study is presented for comparing different configuration of LNG bunkering stations. The results presented here confirm that simulation is a key science to address these complex problems and it represents a major added value for the development of new infrastructures embedded in supply chains and able to favour green transition. Concerning the present study, the simulation output reveals that, although the increase in the price of LNG over the past year has had a strong negative impact on the propensity to activate LNG refuelling stations at maritime terminals, Truck-To-Ship, or Ship-to-Ship with small feeder ships, and Port-To-Ship configurations appear to be flexible and particularly suitable for port terminals located near urban areas. However, the final the choice of the most suitable LNG bunkering station requires further and specific inside investigation as well as considerations on the Decision Maker Strategies and Attitudes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference35 articles.

1. International Maritime Organization (IMO) (2023, April 01). IMO and the Environment. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/IMO%20and%20the%20Environment%202011.pdf.

2. International Maritime Organization (IMO) (2020). Resolution MEPC.320 (74)–2019 Guidelines on Consistent Implementation of 0.50% Sulphur Limit under MARPOL Annex VI, International Maritime Organization. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/pages/34-IMO-2020-sulphur-limit-.aspx.

3. Livaniou, S., and Papadopoulos, G.A. (2022). Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation. Sustainability, 14.

4. European Maritime Safety Agency (EMSA) (2023, April 01). Guidance on LNG Bunkering to Port Authorities and Administrations, 31 January 2018, emsa.europa.eu. Available online: https://www.emsa.europa.eu/publications/inventories/item/3207-guidance-on-lng-bunkering-to-port-authorities-and-administrations.html.

5. The evolution of shipping emissions and the costs of regulation changes in the northern EU area;Johansson;Atmos. Chem. Phys.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3