Affiliation:
1. School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
Abstract
The duration of ball milling greatly influences the characteristics of high-silicon–aluminum composite during the ball milling process. This study examines how the microstructure, thermal conductivity, and hardness of a high-silicon–aluminum composite are affected by different ball milling times. We exposed the powder to various durations of ball milling and employed different pellet ratios. Following this treatment, the powder underwent consolidation via discharge plasma sintering. Our findings show that with a pellet ratio of 10:1 and a milling duration of 8 h, the powder particles were refined, resulting in a more uniform and dense material composition. This refined material boasted a thermal conductivity of 111.6 W/m·K, a Brinell hardness of 136.8 HBW, and a density of 2.304 g/cm3. This method facilitates the creation of a uniform composite powder composition. It encourages the development of a fine-grain structure, which enables the production of particle-reinforced composites with superior properties.
Funder
National Natural Science Foundation of China
Key-Area Research and Development Program of Guangdong Province
Guangdong Provincial Key Laboratory of Advanced Forming of Light Metal Materials
Guangdong Basic and Applied Basic Research Foundation
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献