NaV1.8 as Proarrhythmic Target in a Ventricular Cardiac Stem Cell Model

Author:

Hartmann Nico12ORCID,Knierim Maria23,Maurer Wiebke12,Dybkova Nataliya12,Zeman Florian4,Hasenfuß Gerd12,Sossalla Samuel125ORCID,Streckfuss-Bömeke Katrin126

Affiliation:

1. Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany

2. DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany

3. Clinic for Cardio-Thoracic and Vascular Surgery, University Medical Center, 37075 Göttingen, Germany

4. Center for Clinicial Trials, University of Regensburg, 93042 Regensburg, Germany

5. Medical Clinic I, Cardiology and Angiology, Giessen and Department of Cardiology at Kerckhoff Heart and Lung Center, Justus-Liebig-University, 61231 Bad Nauheim, Germany

6. Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany

Abstract

The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.

Funder

Else-Kröner-Fresenius Foundation

German Heart Foundation/German Foundation of Heart Research

SFB 1002

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3