Application of Luteolin in Neoplasms and Nonneoplastic Diseases

Author:

Rakoczy Katarzyna1ORCID,Kaczor Justyna1ORCID,Sołtyk Adam1,Szymańska Natalia1ORCID,Stecko Jakub1ORCID,Sleziak Jakub1,Kulbacka Julita23ORCID,Baczyńska Dagmara2ORCID

Affiliation:

1. Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland

2. Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland

3. Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania

Abstract

Researchers are amazed at the multitude of biological effects of 3′,4′,5,7-tetrahydroxyflavone, more commonly known as luteolin, as it simultaneously has antioxidant and pro-oxidant, as well as antimicrobial, anti-inflammatory, and cancer-preventive, properties. The anticancer properties of luteolin constitute a mosaic of pathways due to which this flavonoid influences cancer cells. Not only is it able to induce apoptosis and inhibit cancer cell proliferation, but it also suppresses angiogenesis and metastasis. Moreover, luteolin succeeds in cancer cell sensitization to therapeutically induced cytotoxicity. Nevertheless, apart from its promising role in chemoprevention, luteolin exhibits numerous potential utilizations in patients with conditions other than neoplasms, which include inflammatory skin diseases, diabetes mellitus, and COVID-19. This review aims to present the multidimensionality of the luteolin’s impact on both neoplastic and nonneoplastic diseases. When it comes to neoplasms, we intend to describe the complexity of the molecular mechanisms that underlay luteolin’s anticancer effectiveness, as well as to prove the usefulness of integrating this flavonoid in cancer therapy via the analysis of recent research on breast, colon, and lung cancer. Regarding nonneoplastic diseases, this review aims to emphasize the importance of researching the potential of luteolin in areas such as diabetology, virology, and dermatology as it summarizes the most important discoveries in those fields regarding its application.

Funder

Scientific Students’ Group no. 148 of the Department of Molecular and Cellular Biology, Wroclaw Medical University

Statutory Subsidy Funds of the Department of Molecular and Cellular Biology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3