Alismol Purified from the Tuber of Alisma orientale Relieves Acute Lung Injury in Mice via Nrf2 Activation

Author:

Kim Kyun Ha1,Kim Soyeon2ORCID,Kwun Min Jung1,Lee Ji Yeon1,Oh Sei-Ryang3ORCID,Choi Jun-Yong2,Joo Myungsoo1ORCID

Affiliation:

1. School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea

2. Department of Internal Medicine, Korean Medicine Hospital, Pusan National University, Yangsan 50612, Republic of Korea

3. Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883, Republic of Korea

Abstract

Since the ethanol extract of Alisma orientale Juzepzuk (EEAO) suppresses lung inflammation by suppressing Nuclear Factor-kappa B (NF-κB) and activating Nuclear Factor Erythroid 2-related Factor 2 (Nrf2), we set out to identify chemicals constituting EEAO that suppress lung inflammation. Here, we provide evidence that among the five most abundant chemical constituents identified by Ultra Performance Liquid Chromatography (UPLC) and Nuclear Magnetic Resonance (NMR), alismol is one of the candidate constituents that suppresses lung inflammation in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model and protects mice from ALI-like symptoms. Alismol did not induce cytotoxicity or reactive oxygen species (ROS). When administered to the lung of LPS-induced ALI mice (n = 5/group), alismol decreased the level of neutrophils and of the pro-inflammatory molecules, including Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1), Interferon-gamma (IFN-γ), and Cyclooxygenase-2 (COX-2), suggesting an anti-inflammatory activity of alismol. Consistent with these findings, alismol ameliorated the key features of the inflamed lung of ALI, such as high cellularity due to infiltrated inflammatory cells, the development of hyaline membrane structure, and capillary destruction. Unlike EEAO, alismol did not suppress NF-κB activity but rather activated Nrf2. Consequently, alismol induced the expression of prototypic genes regulated by Nrf2, including Heme Oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase-1 (NQO-1), and glutamyl cysteine ligase catalytic units (GCLC). Alismol activating Nrf2 appears to be associated with a decrease in the ubiquitination of Nrf2, a key suppressive mechanism for Nrf2 activity. Together, our results suggest that alismol is a chemical constituent of EEAO that contributes at least in part to suppressing some of the key features of ALI by activating Nrf2.

Funder

the National Research Foundation (NRF) of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3