Downregulation of the INDEHISCENT Gene by RNAi Resulted in Desired Pod Shatter Reduction of Lepidium campestre in Subsequent Generations

Author:

Ivarson Emelie1,Ahlman Annelie1,Englund Jan-Eric2,Lager Ida1,Zhu Li-Hua1ORCID

Affiliation:

1. Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden

2. Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden

Abstract

Wild species field cress (Lepidium campestre) has favorable agronomic traits, making it a good candidate for future development as an oil and catch crop. However, the species is very prone to pod shatter, resulting in severe yield losses. This is one of the important agronomic traits that needs to be improved in order to make this species economically viable. In this study, we cloned the L. campestre INDEHISCENT (LcIND) gene and prepared two LcIND-RNAi constructs with the IND promoter (long 400 bp and short 200 bp) from Arabidopsis. A number of stable transgenic lines were developed and evaluated in terms of pod shatter resistance. The majority of the transgenic lines showed increased resistance to pod shatter compared to the wild type, and this resistance was maintained in four subsequent generations. The downregulation of the LcIND gene by RNAi in the transgenic lines was confirmed by qRT-PCR analysis on T3 lines. Southern blot analysis showed that most of the analyzed lines had a single-copy integration of the transgene, which is desirable for further use. Our results show that it is possible to generate stable transgenic lines with desirable pod shatter resistance by downregulating the LcIND gene using RNAi in field cress, and thus speeding up the domestication process of this wild species.

Funder

MISTRA

the Swedish Government; FORMAS

the Einar and Inga Nilsson foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3