Searching for a Better Animal Model for Chronic Tympanic Membrane Perforation

Author:

Bularda Dragoș1,Șerban Roxana2,Butnaru Corina1,Mareș Mihai3,Burtan Liviu Catalin4,Rădulescu Luminița1ORCID,Mârțu Cristian1ORCID

Affiliation:

1. Department of Otorhinolaryngology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania

2. Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania

3. Laboratory of Antimicrobial Chemotherapy, Iasi University of Life Sciences “Ion Ionescu de la Brad” (IULS), 700490 Iași, Romania

4. Clinical Department, Iasi University of Life Sciences “Ion Ionescu de la Brad” (IULS), 700490 Iași, Romania

Abstract

Chronic tympanic membrane perforation represents a prevalent otological condition, necessitating a reliable animal model for the validation and safety assessment of surgical techniques and materials employed in myringoplasty. This prospective study involved the establishment of chronic tympanic membrane perforation animal models in 16 chinchillas. A thermic myringotomy was conducted on the right ear (study group), followed by cold instrument myringotomy, coupled with the topical application of mitomycin C and dexamethasone solution on the left ear (control group). Results revealed that tympanic membrane perforations in the study group persisted for a minimum of 4 weeks in 93.7% of cases and extended to 12 weeks in 62.5% of the cases. In contrast, all tympanic membrane perforations in the control group were present at 4 weeks, with only 37.5% persisting after 12 weeks, although statistical tests did not find significant differences between the two groups (chi-square: p-value = 0.157, Kruskal–Wallis: p-value = 0.093, Mann–Whitney: p-value = 0.121). The thermic myringotomy employed to induce chronic tympanic membrane perforation in animals demonstrated efficiency and sustainability. This model, characterized by stability and reproducibility, holds promise for future experimental applications in the field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3