Continuous-Flow Magnetic Fractionation of Red Blood Cells Based on Hemoglobin Content and Oxygen Saturation—Clinical Blood Supply Implications and Sickle Cell Anemia Treatment

Author:

Weigand Mitchell,Gomez-Pastora Jenifer,Palmer Andre,Zborowski Maciej,Desai Payal,Chalmers JeffreyORCID

Abstract

Approximately 36,000 units of red blood cells (RBCs) are used every day in the U.S. and there is a great challenge for hospitals to maintain a reliable supply, given the 42-day expiration period from the blood donation date. For many years, research has been conducted to develop ex vivo storage solutions that limit RBC lysis and maintain a high survival rate of the transfused cells. However, little attention is directed towards potential fractionation methods to remove unwanted cell debris or aged blood cells from stored RBC units prior to transfusion, which could not only expand the ex vivo shelf life of RBC units but also avoid adverse events in transfused patients. Such fractionation methods could also limit the number of transfusions required for treating certain pathologies, such as sickle cell disease (SCD). In this work, magnetic fractionation is studied as a potential technology to fractionate functional and healthy RBCs from aged or sickle cells. It has been reported that during ex vivo RBC storage, RBCs lose hemoglobin (Hb) and lipid content via formation of Hb-containing exosomes. Given the magnetic character of deoxygenated- or met-Hb, in this work, we propose the use of a quadrupole magnetic sorter (QMS) to fractionate RBCs based on their Hb content from both healthy stored blood and SCD blood. In our QMS, a cylindrical microchannel placed inside the center of the quadrupolar magnets is subjected to high magnetic fields and constant field gradients (286 T/m), which causes the deflection of the paramagnetic, Hb-enriched, and functional RBCs from their original path and their collection into a different outlet. Our results demonstrated that although we could obtain a significant difference in the magnetic mobility of the sorted fractions (corresponding to a difference in more than 1 pg of Hb per cell), there exists a tradeoff between throughput and purity. Therefore, this technology when optimized could be used to expand the ex vivo shelf life of RBC units and avoid adverse events in transfused individuals or SCD patients requiring blood exchange therapy.

Funder

National Institutes of Health

Defense Advanced Research Projects Agency

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference35 articles.

1. US Blood Supply Factshttps://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-donations-help/blood-needs-blood-supply.html

2. Transfusion Medicine;McCullough,2011

3. Blood Safety and Availabilityhttps://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability

4. Effectiveness, safety, and cost of partial exchange transfusions in patients with sickle-cell anemia at a sickle cell disease center in sub-Saharan Africa;Muteb;Med. Sante Trop.,2017

5. Survival of red blood cells after transfusion: A comparison between red cells concentrates of different storage periods;Luten;Transfusion,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3