Genetic Multi-Objective Optimization of Sensor Placement for SHM of Composite Structures

Author:

Rogala Tomasz1ORCID,Ścieszka Mateusz1,Katunin Andrzej1ORCID,Ručevskis Sandris2ORCID

Affiliation:

1. Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland

2. Institute of Materials and Structures, Riga Technical University, Kipsalas iela 6A, LV-1048 Riga, Latvia

Abstract

Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement (OSP) is appearing due to the need to reach a balance between performance and cost of the diagnostic system. The applied approach of considering nondominated solutions allows for adaption of the system parameters to the user’s expectations, treating this optimization problem as multi-objective. For this purpose, the NSGA-II algorithm was selected for the determination of an optimal set of parameters in the OSP problem for the detection of delamination in composite structures. The objectives comprise minimization of type-I and type-II errors, and number of sensors to be placed. The advantage of the proposed approach is that it is based on experimental data from the healthy structure, whereas all cases with a presence of delamination were acquired from numerical experiments. This makes it possible to develop a customized SHM system for the arbitrary location of damage.

Funder

Latvian Council of Science project “Smart Materials, Photonics, Technologies and Engineering Ecosystem”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3